BS GREWAL EXERCISE QUESTION
Question :-Prove that the nth root of unity form a geometric progression .also show that the sum of those n roots is zero and their product is(-1)^n-1
/* --------------------------COMPLEX NUMBERS----------------------------------------------------------------*/
Solution:- let x is the nth root of unity form a series of geometric progression ,we have
x^n=1
x=(1)^1/n
x=(1+i0)1/n
x=(cos0+isin0)^1/n=(cos2rπ+isin2rπ)^1/n
x=cis2rπ/n
Putting r=0,1,2,3,3…,n-1
x=1,(cis2π/n)^r=w^r
.i.e. x=1,w,w^2,w^3,……..,w^(n-1)
Clearly its
form a geometric progression since w is one nth root of unity
Then w^n=1
w^n-1=0
(w-1)(1+w+w^2+…….+w^n-1)=0
w≠ 1
(1+w+w^2+…….+w^n-1)=0
Hence the
sum of nth root of unity is zero
Again, 1*w*w^2.……..*w^n-1
w^(1+2+3+4…n-1)
w^(n(n-1)/2)
[(Cisπ)^2/n]^n(n-1)/2
(-1)^n-1
hence proved😉😋
* /--------------------------------------------------------------------------------------------------------------*/
No comments:
Post a Comment