/--------------------------------------- complex number solution---------------------------------------------------/
Reduce tan-1(cosӨ+isinӨ) to the form of a+ib. hence show that, tan-1(e^iӨ) =nπ/2+π/4-i/2* log tan(π/4-Ө/2)
Solution :- let tan-1(cosӨ+isinӨ)=x+iy
Then tan(x+iy)= (cosӨ+isinӨ)
tan(x-iy)= (cosӨ-isinӨ)
now tan2x=[tan(x+iy)+ tan(x-iy)]/1- tan(x+iy) tan(x+iy)
tan2x=2cosӨ/1-(cos^2Ө+sin^2Ө)
tan2x=2cosӨ/1-1
tan2x=∞
i.e. 2x=nx+π/2
x=nx/2+π/4
tan2iy= tan(x+iy)- tan(x-iy)
= [tan(x+iy)- tan(x-iy)]/1+ tan(x+iy)*tan(x-iy)
tan2iy=2isinӨ/2
=tanh2y=sinӨ
ð (e^2Ө-e^-2Ө)/ (e^2Ө+e^-2Ө)= sinӨ
By applying componendo and dividendo, we get
e^2Ө/ e^-2Ө=(1+ sinӨ)/ 1-sinӨ
=[(cosΘ/2+sinӨ/2)]^2/[(cosӨ/2-sinӨ/2)]^2
e^4Ө=(1+tan Ө/2)^2/(1-tan Ө/2)^2
e^2Ө=(tanπ/4+tan Ө/2)/( tanπ/4-tan Ө/2)
= tan(π/4+Ө/2)
Ө=1/2log tan(π/4+Ө/2)
e^-2Ө=(1-tan Ө/2)/(1+tan Ө/2)
=(tanπ/4-tan Ө/2)/( tanπ/4+tan Ө/2)
e^-2Ө= tan(π/-Ө/2)
-2Ө=log tan(π/-Ө/2)
Ө=-1/2log tan(π/4-Ө/2)
Hence , tan-1(e^iӨ) =nπ/2+π/4-i/2* log tan(π/4-Ө/2)
hence proved
Solution :- let tan-1(cosӨ+isinӨ)=x+iy
Then tan(x+iy)= (cosӨ+isinӨ)
tan(x-iy)= (cosӨ-isinӨ)
now tan2x=[tan(x+iy)+ tan(x-iy)]/1- tan(x+iy) tan(x+iy)
tan2x=2cosӨ/1-(cos^2Ө+sin^2Ө)
tan2x=2cosӨ/1-1
tan2x=∞
i.e. 2x=nx+π/2
x=nx/2+π/4
tan2iy= tan(x+iy)- tan(x-iy)
= [tan(x+iy)- tan(x-iy)]/1+ tan(x+iy)*tan(x-iy)
tan2iy=2isinӨ/2
=tanh2y=sinӨ
ð (e^2Ө-e^-2Ө)/ (e^2Ө+e^-2Ө)= sinӨ
By applying componendo and dividendo, we get
e^2Ө/ e^-2Ө=(1+ sinӨ)/ 1-sinӨ
=[(cosΘ/2+sinӨ/2)]^2/[(cosӨ/2-sinӨ/2)]^2
e^4Ө=(1+tan Ө/2)^2/(1-tan Ө/2)^2
e^2Ө=(tanπ/4+tan Ө/2)/( tanπ/4-tan Ө/2)
= tan(π/4+Ө/2)
Ө=1/2log tan(π/4+Ө/2)
e^-2Ө=(1-tan Ө/2)/(1+tan Ө/2)
=(tanπ/4-tan Ө/2)/( tanπ/4+tan Ө/2)
e^-2Ө= tan(π/-Ө/2)
-2Ө=log tan(π/-Ө/2)
Ө=-1/2log tan(π/4-Ө/2)
Hence , tan-1(e^iӨ) =nπ/2+π/4-i/2* log tan(π/4-Ө/2)
hence proved
No comments:
Post a Comment