BS GREWAL SOLUTION
Complex functions
If for each
value of the complex variable Z(x+iy) in a given region R,we have one or more
values of W(-u+iv) ,then w is said to be a complex number of Z
Written as
f(z) = w = u(x,y)+iv(x,y)
Exponential
function of a complex variable
e^x=
1+x/1!+x^2/2!+ ---------+x^n/n!+-----------,x €R
then
e^z=1+z/1!+z^2/2!+ ---------+z^n/n!+---------, z € Ө
properties:-
* Exponential form of
z =r(e^iӨ)
*e^z is periodic
function having imaginary period 2πi
.i.e. e^(z+2πi) =e^z* e^2πi
= e^z
·
e^z is not
zero for any value of z
· e^z = e^z⎺
question:-separate into
real and imaginary parts
1.exp(z^2),z=(x+iy)
2. exp(5+iπ/2)
3. e^(16+30i)
HERE IS THE
SOLUTION
Solution
1. :- e^(z^2)=e^(x+iy)^2
e^(x^2-y^2+2ixy)
= e^(x^2-y^2)*e^(2ixy)
(e^(x^2-y^2))*(cos2xy+isin2xy)
real part= e^(x^2-y^2)
imaginary part= e^(cos2xy+isin2xy)
Solution
2.:- exp(5+iπ/2)=e^(5+iπ/2)
Let x+iy=e^5*e^ iπ/2
=
e^5*(cosiπ/2+isin π/2)
=e^5*(i)
y= e^5*(i)
Solution
3.:- e^(16+30i)
X=16 and y=30
e^16*(cos30+isin30)
e^16*(√ 3/2+i1/2)
No comments:
Post a Comment