Bs Grewal
Exercise question
Here is the solution of a complex number
Question:-:-if sinα+2sinβ+3sin¥=0, cosα+2cosβ+3cos¥=0 prove that sin3α+8sin3β+27sin3¥= 18sin(α+¥+β) and cos3α+8cos3β +27cos3¥=18cos(α+¥+β)
Solution:- let a= cosα+isinα = cisα
b =2( cosβ+ isinβ )= 2cisβ
c = 3(cos¥ + isin¥ )= 3cis¥
and given sinα+2sinβ+3sin¥=0,
cosα+2cosβ+3cos¥=0
then a+b+c = cisα+2cisβ+3cis¥
=> a+b+c = (cosα+2cosβ+3cos¥)+i(sinα+2sinβ+3sin¥)
=> a+b+c = 0+i0=0
=> now (a+b+c)^3 = a^3+ b^3+ c^3+3(a+b+c)(ab+bc+ca)-3abc
since, (a+b+c)=0
=> (cisα)^3+(2cisβ)^3+(3cis¥)^3 =3 cisα cisβ cis¥
=>Cis3α+ 8Cis3β+27 Cis3¥=18cisα cisβ cis¥
=> Cos3 α +isin3 α +8cos3 β +8isin3 β +27cos3¥ +27isin3¥ =18cis(α+ β+¥ )
=> Cos3 α+8cos3 β+27cos3¥ +i(sin3α+8sinβ+27sin3¥)=18(cos(α+β+¥)+isin(α+β+¥))
On comparing real and imaginary part
cos3 α+8cos3 β+27cos3¥ =18cos(α+β+¥)
(sin3α+8sinβ+27sin3¥)= 18sin(α+β+¥)
Hence proved
No comments:
Post a Comment